Indian Statistical Institute, Bangalore Centre M.Math. (I Year): 2013-2014 Semester I: Mid-Semestral Examination Measure theoretic Probability

16.09.2013

Time: $2\frac{1}{2}$ hours.

Maximum Marks: 80

Note: Notation and terminology are understood to be as used in class. State clearly the results you are using in your answers.

- 1. (15 marks) Let $(\Omega, \mathcal{F}, \mu)$ be a Boolean measure space; let μ^* denote the corresponding outer measure. Show that μ^* is countably subadditive.
- 2. (15 marks) Let L^* denote the Lebesgue outer measure on the class of all subsets of \mathbb{R} . Show that $L^*(A+a)=L^*(A)$ for all $A\subseteq \mathbb{R},\ a\in \mathbb{R}$.
- 3. (15+10 = 25 marks) (i) Let $(\Omega, \mathcal{B}, \mu)$ be a measure space with $\mu(\Omega) < \infty$. Let $\{f_n(\cdot)\}$ be a sequence of real valued integrable functions such that $\lim_{n\to\infty} f_n(\omega) = f(\omega)$ uniformly over $\omega \in \Omega$, for some function $f(\cdot)$. Show that $f(\cdot)$ is integrable w.r.t. μ , and that

$$\int_{\Omega} f(\omega) d\mu(\omega) = \lim_{n \to \infty} \int_{\Omega} f_n(\omega) d\mu(\omega).$$

- (ii) Can the hypothesis $\mu(\Omega) < \infty$ in (i) be dropped?
- 4. (15+10=25 marks) (i) Let (Ω,\mathcal{B},μ) be a σ -finite measure space. Let λ be a totally finite measure on (Ω,\mathcal{B}) such that $\lambda(E)=\int_E f(\omega)d\mu(\omega)$ for $E\in\mathcal{B}$, where f is a nonnegative measurable function. Let g be a real valued measurable function on Ω . Show that g is integrable w.r.t. λ if and only if (g.f) is integrable w.r.t. μ , and in such a case

$$\int_{\Omega} g(\omega) d\lambda(\omega) = \int_{\Omega} g(\omega) f(\omega) d\mu(\omega).$$

(ii) Let X be a real valued random variable on a probability space (Ω, \mathcal{B}, P) with probability density function $f_X(\cdot)$. Show that E(X) exists if and only if $\int_{\mathbb{R}} |x| f_X(x) dx < \infty$, and in such a case $E(X) = \int_{\mathbb{R}} x f_X(x) dx < \infty$.